ANOVA
ANOVA
使用時機
\[
\begin{array}{cccccc}
\text{treatment 1} & \text{treatment 2} & \cdots & \text{treatment k} \\
x_{11} & x_{12} & \cdots & x_{1k} \\
x_{21} & x_{22} & \cdots & x_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n_1 1} & x_{n_2 2} & \cdots & x_{n_k k} \\
\downarrow & \downarrow & \cdots & \downarrow & \searrow \\
\overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_k & & \bar{\bar{x}}
\end{array}
\]
\[
\begin{array}{rcl}
\text{SSE} &=& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2=\sum_{j=1}^{k} (n_j-1)s_j^2 \\
\text{SSTR} &=& \sum_{j=1}^{k} n_j(\overline{x}_j-\bar{\bar{x}})^2 \\
\text{SST} &=& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\bar{\bar{x}})^2
\end{array}
\]
圖形
\[
\begin{array}{cccc}
& & & \text{SST}\\
\text{SSE} & \downarrow & \searrow & \\
& & \longrightarrow \\
& & \text{SSTR}
\end{array}
\]
表格
source of variation | sum of squares | degrees of freedom | mean square | \(F\) |
Treatments | \(\text{SSTR}\) | \(k-1\) | \(\text{MSTR}=\frac{\text{SSTR}}{k-1}\) | \(F=\frac{\text{MSTR}}{\text{MSE}}\) |
Error | \(\text{SSE}\) | \(n-k\) | \(\text{MSE}=\frac{\text{SSE}}{n-k}\) | |
Total | \(\text{SST}\) | \(n-1\) | | |
與Simple Linear Regression \(\text{E}(y)=\beta_0+\beta_1 x\)比較一下
source of variation | sum of squares | degrees of freedom | mean square | \(F\) |
Regression | \(\text{SSR}\) | \(1\) | \(\text{MSR}=\frac{\text{SSR}}{1}\) | \(F=\frac{\text{MSR}}{\text{MSE}}\) |
Error | \(\text{SSE}\) | \(n-2\) | \(\text{MSE}=\frac{\text{SSE}}{n-2}\) | |
Total | \(\text{SST}\) | \(n-1\) | | |
Multiple Regression \(\text{E}(y)=\beta_0+\beta_1 x_1+\beta_2 x_2+\cdots+\beta_p x_p.\)
source of variation | sum of squares | degrees of freedom | mean square | \(F\) |
Regression | \(\text{SSR}\) | \(p\) | \(\text{MSR}=\frac{\text{SSR}}{p}\) | \(F=\frac{\text{MSR}}{\text{MSE}}\) |
Error | \(\text{SSE}\) | \(n-p-1\) | \(\text{MSE}=\frac{\text{SSE}}{n-p-1}\) | |
Total | \(\text{SST}\) | \(n-1\) | | |
No comments:
Post a Comment