ANOVA
ANOVA
使用時機
treatment 1treatment 2⋯treatment kx11x12⋯x1kx21x22⋯x2k⋮⋮⋱⋮xn11xn22⋯xnkk↓↓⋯↓↘¯x1¯x2⋯¯xkˉˉx
SSE=∑kj=1∑nji=1(xij−¯xj)2=∑kj=1(nj−1)s2jSSTR=∑kj=1nj(¯xj−ˉˉx)2SST=∑kj=1∑nji=1(xij−ˉˉx)2
圖形
SSTSSE↓↘⟶SSTR
表格
source of variation | sum of squares | degrees of freedom | mean square | F |
Treatments | SSTR | k−1 | MSTR=SSTRk−1 | F=MSTRMSE |
Error | SSE | n−k | MSE=SSEn−k | |
Total | SST | n−1 | | |
與Simple Linear Regression E(y)=β0+β1x比較一下
source of variation | sum of squares | degrees of freedom | mean square | F |
Regression | SSR | 1 | MSR=SSR1 | F=MSRMSE |
Error | SSE | n−2 | MSE=SSEn−2 | |
Total | SST | n−1 | | |
Multiple Regression E(y)=β0+β1x1+β2x2+⋯+βpxp.
source of variation | sum of squares | degrees of freedom | mean square | F |
Regression | SSR | p | MSR=SSRp | F=MSRMSE |
Error | SSE | n−p−1 | MSE=SSEn−p−1 | |
Total | SST | n−1 | | |
No comments:
Post a Comment