Processing math: 18%

線性代數筆記

線性代數筆記

Linear Algebra

Contents


TASHOUN(她笑)

    real complex        
    transpose
At
adjoint
A
       
orthogonally
diagonalizable
spectral theorem
symmetric
At=A
Hermitian (self-adjoint)
A=A
unitarily
diagonalizable
spectral theorem
normal
    orthogonal
AtA=I
unitary
AA=I
       

注意到上面這張圖,美中不足的地方在於Hermitian並不是unitarily diagonalizable的等價條件,讓這張圖並沒有呈現完美的對稱。

Spectral Decomposition

Let A=PDPt=(u1|u2||un)(λ1000λ2000λn)(ut1ut2utn)=λ1u1ut1+λ2u2ut2++λnunutn be the orthogonal diagonalization of A. For any v, uiutiv=(utiv)ui=ui,vui=v,uiui=v,ui||ui||2ui=projspan(ui)v=the orthogonal projection of v on the subspace span(ui)Eλi

Equivalent Conditions of an Invertible Matrix

See Anton's Theorem 6.4.5 in Elementary Linear Algebra.

If A is an n×n matrix, then the following statements are equivalent.

  1. A is invertible.
  2. Ax=0 has only the trivial solution.
  3. The reduced row echelon form of A is In.
  4. A is expressible as a product of elementary matrices.
  5. Ax=b is consistent for every n×1 matrix b.
  6. Ax=b has exactly one solution for every n×1 matrix b.
  7. det.
  8. The column vectors of A are linearly independent .
  9. The row vectors of A are linearly indenpendent.
  10. The column vectors of A span \mathbb{R}^n.
  11. The row vectors of A span \mathbb{R}^n.
  12. The column vectors of A form a basis for \mathbb{R}^n.
  13. The row vectors of A form a basis for \mathbb{R}^n.
  14. A has rank n.
  15. A has nullity 0.
  16. The orthogonal complement of the null space of A is \mathbb{R}^n.
  17. The orthogonal complement of the row space of A is \{\mathbf{0}\}.
  18. The kernel of T_A is \{\mathbf{0}\}.
  19. The range of T_A is \mathbb{R}^n.
  20. T_A is one-to-one.
  21. \lambda=0 is not an eigenvalue of A.
  22. A^T A is invertible.

上面這個列表不太好用,因為一般來說不一定有 m=n,所以我個人比較喜歡用下面的等價關係。下面 A 為一 m\times n 的矩陣。點擊箭頭可以看到證理由。

線性變換的觀點   向量空間的觀點       維度的觀點   向量的觀點
                columns are linearly independent
              rank = the number of linearly independent columns rank = the number of linearly independent columns  
A:F^n\to F^m is one-to-one Theorem 8.2.1 kernel A = 0 Definition nullity A= 0 Dimension Theorem rank A = n    
              rank A^T = n <=> A^T columns span F^n rank A^T = n <=> A^T columns span F^n  
                rows span F^n
                 
                rows are linearly independent
              rank = the number of linearly independent rows rank = the number of linearly independent rows  
A:F^n\to F^m is onto Definition image A = F^m   rank = dimension of image   rank A = m    
              column space = image A column space = image A  
                columns span F^m

Consistency of A\mathbf{x}=\mathbf{b}

  • \text{rank}(A)\neq \text{rank}(A|\mathbf{b})\Leftrightarrow A\mathbf{x}=\mathbf{b} has no solutions
  • \text{rank}(A)=\text{rank}(A|\mathbf{b})=n\Leftrightarrow A\mathbf{x}=\mathbf{b} has exactly one solution
  • \text{rank}(A)=\text{rank}(A|\mathbf{b})< n\Leftrightarrow A\mathbf{x}=\mathbf{b} has infinitely many solutions

上面這三個敘述可以利用上面的one-to-one及onto的等價敘述得到。另外,A\mathbf{x}=\mathbf{b} 的解只有三種可能,無解、恰有一組解、無線多組解。證明如下:假設 \mathbf{x}_1, \mathbf{x}_2 為相異兩組解,則 \mathbf{x}_1+c(\mathbf{x}_1-\mathbf{x}_2) 皆為解,其中 c 為任意實數。

注意到,例如空間中的三個平面,既使判斷方程式是無解、無限多組解還是唯一解之後,仍然要再更進一步探討(可以利用法向量)三個平面的相交情況。(平面相交的圖形來自於Anton的書)

A Motivation of Adjoint Operators

Click Me!

A Motivation of Normal Operators

Click Me!

Transpose, Trace, Determinant, Rank, Inverse

transposetracedetrankinverse
cA(cA)^t=cA^t
by def.
\text{tr }cA=c\cdot \text{tr }A
by def.
\det{cA}=c^n \det{A}
by def.
\text{rank }cA=\text{rank }A, c\neq 0(cA)^{-1}=c^{-1}A^{-1}, c\neq 0
by def.
A+B(A+B)^t=A^t+B^t
by def.
\text{tr }(A+B)=\text{tr }A+\text{tr }B
by def.
\text{rank }(A+B)\leq \text{rank }A+\text{rank }B
AB(AB)^t=B^t A^t
by def.
\text{tr }AB=\color{red}{\text{tr }BA}
by def.
\det{AB}=\det{A}\cdot \det{B}
difficult
\text{rank }AB\leq \min{\{\text{rank }A, \text{rank }B\}}(AB)^{-1}=B^{-1}A^{-1}
by def.
A^t(A^t)^t=A
by def.
\text{tr }A^t=\text{tr }A
by def.
\det{A^t}=\det{A}
by def.
\text{rank }A^t=\text{rank }A
difficult
(A^t)^{-1}=(A^{-1})^t

A Geometric Interpretation of Determinant

參考這裡,動畫版參考這裡。另一個比較常見的證法是這個,還有一個比較少見的證法,不過我覺得後面兩個都比不上第一個簡單。

Properties of the Determinant

See Friedberg's Linear Algebra

  1. If B is a matrix obtained by interchanging any two rows or interchanging any two columns of an n\times n matrix A, then \det{B} = −\det{A}. (Proof: By the definition.)
  2. If B is a matrix obtained by multiplying each entry of some row or column of an n\times n matrix A by a scalar k, then \det{B} = k\cdot \det{A}. (Proof: By the definition.)
  3. If B is a matrix obtained from an n\times n matrix A by adding a multiple of row i to row j or a multiple of column i to column j for i\neq j, then \det{B} = \det{A}. (Proof: Waiting for proving.)
  4. The determinant of an upper triangular matrix is the product of its diagonal entries. In particular, \det{I} = 1. (Proof: By the definition.)
  5. If two rows (or columns) of a matrix are identical, then the determinant of the matrix is zero. (Proof: By 3 and 10.)
  6. For any n\times n matrices A and B, \det{AB}=\det{A}\cdot \det{B}. (Proof: It is difficult to prove.)
  7. An n\times n matrix A is invertible if and only if \det{A}\neq 0. Furthermore, if A is invertible, then \det{A^{-1}}=\frac{1}{\det{A}}. (Proof: By 4 and 6.)
  8. For any n\times n matrix A, the determinants of A and A^t are equal. (Proof: By the definition.)
  9. If A and B are similar matrices, then \det{A}=\det{B}. (Proof: By 6 and 7.)
  10. If A has a 0 row or a 0 column, then \det{A}=0. (Proof: By the definition.)
  11. If ith row equals a multiple of jth row, then \det{A}=0. (Proof: 3 and 10.)
  12. \det{A} is row linear. (Proof: Waiting for proving.)

遞迴方程式的線性代數觀點recurrence relation (linear algebra aspect)

Click Me!

我們大學時(甚至是高中),即學過遞迴方程式(recurrence relation),例如 a_{n+2}=5a_{n+1}-6a_n,其中 n 為大於等於 1 的正整數,一般書上教我們的解法是,先求出此遞迴方程式的特徵方程式(characteristic equation) r^2=5r-6,並求出此特徵方程式的根為 r=2 或是 r=3,則此遞迴方程式的解為 a_n=c_1\cdot 2^n+c_2\cdot 3^n.

又例如遞迴方程式 a_{n+2}=4a_{n+1}-4a_n.,此遞迴方程式的特徵方程式為 r^2=4r-4,有重根 r=2,這時候我們要調整遞迴方程式的解為 a_n=c_1\cdot 2^n+c_2\cdot n\cdot 2^n,學生到這裡可能會有三個問題。

  1. 特徵方程式是我們在線性代數中學習到的觀念,遞迴方程式是否跟向量空間(vector space)、線性變換(linear transformation)有關係,為何在解遞迴方程式時會用到特徵方程式?
  2. 我們何以知道當特徵方程式有重根時,其遞迴方程式的解要做如此的調整?
  3. 一般書上都是給出遞迴方程式的解,然後用代入驗證的方法證明,然而,相信數學家們不是一開始研究遞迴方程式時就知道其解的形式,數學家們當初是如何知道遞迴方程式的解的形式呢?

本文的目的在回答這三個問題。

Diamond

Singular Value
Decomposition
Pseudoinverse
Gram-Schmidt
Process
Orthogonal
Projection
Least Square
Problem
Householder
Reflection
QR-decomposition

The Importance of Strang's Big Picture

Click Me!

Jordan Canonical Form

我個人偏好的Jordan Form的證明。

No comments:

Post a Comment