Big Picture of Linear Algebra

Big Picture of Linear Algebra

The Importance of Strang's Big Picture

下圖是Strang給的Big Picture of Linear Algebra,既然敢叫Big Picture,必定是有它厲害的地方,不過Strang並沒有說得很清楚,本文說明這張圖為什麼很重要。

不過因為這張圖有稜有角不好畫,所以我都會快速畫兩個8,如下圖。

說明一下縮寫表示的意思
CS表示column space
RS表示row space
R表示range
N表示nullspace

注意到\(CS(A)=R(A)\), \(RS(A)=CS(A^t)\)。

圖形中為了避免出現太多不同的符號,所以不寫CS跟RS,只用R跟N來表示這些空間。

證明垂直的時候,比較偏好使用CS跟RS。

證明維度的時候,比較偏好使用R。

1. Visualization: Perpendicular

\(RS(A)\perp N(A)\)
\(CS(A)\perp N(A^t)\)

Proof: Let \(\mathbf{v}\) be a vector in \(N(A)\) and \(\mathbf{r}\) be a row of \(A\). Then \(\langle \mathbf{r}, \mathbf{v}\rangle=0\) by the definition of multiplication and \(A\mathbf{v}=\mathbf{0}\). The second part follows immediately from considering the transpose of \(A\) in the first part and the row space of \(A^t\) is the same as the column space of \(A\).

2. Visualization: Orthogonal Complement

\(RS(A)^{\perp}=N(A)\)
\(CS(A)^{\perp}=N(A^t)\)

3. Visualization: Dimension

Let \(A\) be a \(m\times n\) matrix. We can view \(A\) as a linear transformation \(A:F^n\to F^m\) defined by \(A(\mathbf{v})=A\mathbf{v}\).

We can also view \(A^t\) as a linear transformation \(A^t:F^m\to F^n\) defined by \(A^t(\mathbf{w})=A^t\mathbf{w}\).

By the dimension theorem,
\(n=\text{nullity}(A)+\text{rank}(A)=\dim{N(A)}+\dim{R(A)}\)
\(m=\text{nullity}(A^t)+\text{rank}(A^t)=\dim{N(A^t)}+\dim{R(A^t)}\)

Since \(\text{rank}(A)=\text{rank}(A^t)\), the following identities follows immediately from the above ones. \(n=\text{nullity}(A)+\text{rank}(A^t)=\dim{N(A)}+\dim{R(A^t)}\)
\(m=\text{nullity}(A^t)+\text{rank}(A)=\dim{N(A^t)}+\dim{R(A)}\)

4. \(N(A^t A)=N(A), R(A^t)=R(A^t A)\)

\(N(A^t A)=N(A)\)

Proof: (\(\supseteq\)) is trivial. We show the other direction (\(\subseteq\)) \[\begin{array}{ll} & \mathbf{v}\in N(A^t A) \\ \Rightarrow & A^t A\mathbf{v}=\mathbf{0} \\ \Rightarrow & \mathbf{v}^t A^t A \mathbf{v}=\mathbf{0} \\ \Rightarrow & (A\mathbf{v})^t (A \mathbf{v})=\mathbf{0} \\ \Rightarrow & A\mathbf{v}=\mathbf{0} \\ \Rightarrow & A\mathbf{v}\in N(A) \end{array}\]

\(R(A^t)=R(A^t A)\)

Proof: (\(\supseteq\)) is trivial. We show the other direction (\(\subseteq\)) \[\begin{array}{lll} \dim{R(A^t A)} & = & n-\dim{N(A^t A)} \\ & = & n-\dim{N(A)} \\ & = & \dim{R(A)} \\ & = & \dim{R(A^t)} \end{array}\] Since \(R(A^t A)\) is a subspace of \(R(A^t)\) and they have the same dimension, they are identical.

5. Columns of \(A\) are linear independent \(\Leftrightarrow\) \(A^t A\) is invertible

Remark: This is a key step of finding the least square solution or orthogonal projection.

Proof: Let \(A\) be a \(m\times n\) matrix. \[\begin{array}{cl} & \text{columns of }A \text{ are linear independent} \\ \Rightarrow & \text{rank}(A)=n \\ \stackrel{R(A^t A)=R(A)}{\Rightarrow} & \text{rank}(A^t A)=\text{rank}(A)=n \\ \stackrel{A^t A\text{ is }n\times n}{\Rightarrow} & A^t A\text{ is invertible} \end{array}\]

6. \(A^t A\)

當我們考慮\(A^t A\)的時候,左右兩個圖會是相同的而併在一起。

7. Visualization: Least Square

8. Visualization: Pseudoinverse

No comments:

Post a Comment