The Importance of Strang's Big Picture
下圖是Strang給的Big Picture of Linear Algebra,既然敢叫Big Picture,必定是有它厲害的地方,不過Strang並沒有說得很清楚,本文說明這張圖為什麼很重要。
不過因為這張圖有稜有角不好畫,所以我都會快速畫兩個8,如下圖。
說明一下縮寫表示的意思
CS表示column space
RS表示row space
R表示range
N表示nullspace
注意到CS(A)=R(A), RS(A)=CS(At)。
圖形中為了避免出現太多不同的符號,所以不寫CS跟RS,只用R跟N來表示這些空間。
證明垂直的時候,比較偏好使用CS跟RS。
證明維度的時候,比較偏好使用R。
1. Visualization: Perpendicular
RS(A)⊥N(A)
CS(A)⊥N(At)
Proof: Let v be a vector in N(A) and r be a row of A. Then ⟨r,v⟩=0 by the definition of multiplication and Av=0. The second part follows immediately from considering the transpose of A in the first part and the row space of At is the same as the column space of A.
2. Visualization: Orthogonal Complement
RS(A)⊥=N(A)
CS(A)⊥=N(At)
3. Visualization: Dimension
Let A be a m×n matrix. We can view A as a linear transformation A:Fn→Fm defined by A(v)=Av.
We can also view At as a linear transformation At:Fm→Fn defined by At(w)=Atw.
By the dimension theorem,
n=nullity(A)+rank(A)=dimN(A)+dimR(A)
m=nullity(At)+rank(At)=dimN(At)+dimR(At)
Since rank(A)=rank(At), the following identities follows immediately from the above ones.
n=nullity(A)+rank(At)=dimN(A)+dimR(At)
m=nullity(At)+rank(A)=dimN(At)+dimR(A)
4. N(AtA)=N(A),R(At)=R(AtA)
N(AtA)=N(A)
Proof: (⊇) is trivial. We show the other direction (⊆) v∈N(AtA)⇒AtAv=0⇒vtAtAv=0⇒(Av)t(Av)=0⇒Av=0⇒Av∈N(A)
R(At)=R(AtA)
Proof: (⊇) is trivial. We show the other direction (⊆) dimR(AtA)=n−dimN(AtA)=n−dimN(A)=dimR(A)=dimR(At) Since R(AtA) is a subspace of R(At) and they have the same dimension, they are identical.
5. Columns of A are linear independent ⇔ AtA is invertible
Remark: This is a key step of finding the least square solution or orthogonal projection.
Proof: Let A be a m×n matrix. columns of A are linear independent⇒rank(A)=nR(AtA)=R(A)⇒rank(AtA)=rank(A)=nAtA is n×n⇒AtA is invertible
6. AtA
當我們考慮AtA的時候,左右兩個圖會是相同的而併在一起。
No comments:
Post a Comment