A Motivation of Adjoint Operators on Inner Product Spaces

A Motivation of Adjoint Operators on Inner Product Spaces

A motivation of adjoint operators

In the real inner product space \(\mathbb{R}^n\) with the standard inner product \[ \langle \mathbf{v}, \mathbf{w}\rangle =\left\langle\begin{bmatrix}a_1\\a_2\\\vdots\\a_n\end{bmatrix}, \begin{bmatrix}b_1\\b_2\\\vdots\\b_n\end{bmatrix}\right\rangle =a_1 b_1+a_2 b_2+\cdots +a_n b_n =\mathbf{w}^t \mathbf{v}, \] we have \[ \langle A\mathbf{v}, \mathbf{w}\rangle =\langle \mathbf{v}, A^t\mathbf{w}\rangle. \]

However, in the complex inner product space \(\mathbb{C}^n\) with the standard inner product \[ \langle \mathbf{v}, \mathbf{w}\rangle =\left\langle\begin{bmatrix}w_1\\w_2\\\vdots\\w_n\end{bmatrix}, \begin{bmatrix}z_1\\z_2\\\vdots\\z_n\end{bmatrix}\right\rangle =w_1 \overline{z_1}+w_2 \overline{z_2}+\cdots +w_n \overline{z_n} =\overline{\mathbf{w}^t} \mathbf{v}, \] we DO NOT have \[\langle A\mathbf{v}, \mathbf{w}\rangle=\langle \mathbf{v}, A^t\mathbf{w}\rangle.\] Instead, we have \[\langle A\mathbf{v}, \mathbf{w}\rangle=\langle \mathbf{v}, \overline{A^t}\mathbf{w}\rangle.\] Recall that we define the conjugate transpose or adjoint \(A^*\) of a matrix \(A\) as \(A^*=\overline{A^t}\). Hence, we have \[\langle A\mathbf{v}, \mathbf{w}\rangle=\langle \mathbf{v}, A^*\mathbf{w}\rangle.\] This gives us a motivation of defining adjoint of matrices. We want to define a linear operator \(T^*\) on a finite dimensional inner product space \(V\) which satisfies that \[\langle T(\mathbf{v}), \mathbf{w}\rangle=\langle \mathbf{v}, T^*(\mathbf{w})\rangle\]

In most of standard textbooks, like Friedberg, Insel and Spence's Linear Algebra, they gave a lemma first (Theorem 6.8, Riesz Representation Theorem), then proved the existence of \(T^*\) by using the lemma (Theorem 6.9). However, the lemma seems to be clever for novices.

I am going to define adjoint of operators through adjoint of matrices here. A brief version see Treil's Linear Algebra Done Wrong (Section 5.5).

Let \(V\) be a finite dimensional inner product space \(V\) and let \(T\) be a linear operator on \(V\). Given an "orthonormal" basis \(\beta\) for \(V\), (the existence of such basis follows immediately from the Gram-Schmidt process,) we have the following commutative diagram \[ \begin{array}{rcl} V & \stackrel{T}{\longrightarrow}& V \\ \phi_{\beta}\downarrow & & \downarrow \phi_{\beta} \\ F^n & \underset{[T]_{\beta}}{\longrightarrow} & F^n \end{array} \] where \(\phi_{\beta}\) is the standard representation of \(V\) with respect to \(\beta\) and \([T]_{\beta}\) is the matrix representation of \(T\) in the ordered basis \(\beta\). The definitions and properties of \(\phi_{\beta}\) and \([T]_{\beta}\) see Chapter 2 in Friedberg, Insel and Spence's Linear Algebra.

Note that we have (Theorem 2.14) \[T(\mathbf{v}) =\phi_{\beta}^{-1}([T]_{\beta}\phi_{\beta}(\mathbf{v})). \] Imitating this, let us define a mapping \(T^*:V\to V\) by \[T^*(\mathbf{v}) =\phi_{\beta}^{-1}([T]_{\beta}^*\phi_{\beta}(\mathbf{v})), \] where \([T]_{\beta}^*\) is the conjugate transpose of \([T]_{\beta}\).

Obviously, \(T^*\) is a linear operator. We show that \[\langle T(\mathbf{v}), \mathbf{w}\rangle=\langle \mathbf{v}, T^*(\mathbf{w})\rangle\] We need a key lemma (without proof): If \(\beta\) is an orthonormal basis for \(V\), then \(\langle \mathbf{v}, \mathbf{w}\rangle =\langle [\mathbf{v}]_{\beta}, [\mathbf{w}]_{\beta}\rangle =\langle \phi_{\beta}(\mathbf{v}), \phi_{\beta}(\mathbf{w})\rangle\).

Therefore, \[ \begin{array}{lcl} \langle \mathbf{v}, T^*(\mathbf{w})\rangle &=& \langle \mathbf{v}, \phi_{\beta}^{-1}([T]_{\beta}^*\phi_{\beta}(\mathbf{w}))\rangle \\ &\stackrel{\text{Lemma}}{=}& \langle \phi_{\beta}(\mathbf{v}), [T]_{\beta}^*\phi_{\beta}(\mathbf{w})\rangle \\ &=& \langle [T]_{\beta}\phi_{\beta}(\mathbf{v}), \phi_{\beta}(\mathbf{w})\rangle \\ &\stackrel{\text{Theorem 2.14}}{=}& \langle \phi_{\beta}(T(\mathbf{v})), \phi_{\beta}(\mathbf{w})\rangle \\ &\stackrel{\text{Lemma}}{=}& \langle T(\mathbf{v}), \mathbf{w}\rangle. \end{array} \]

Remark. We defined \(T^*\) by choosing a specific orthonormal basis. But the definition of \(T^*\) is independent on the choice of the orthonormal basis since \[\langle [\mathbf{v}]_{\beta}, [\mathbf{w}]_{\beta}\rangle =\langle [\mathbf{v}]_{\alpha}, [\mathbf{w}]_{\alpha}\rangle\] for any two orthonormal bases.

Proof: Suppose that \(\alpha=\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}\) and \(\beta=\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}\) are two orthonormal bases for \(\mathbb{C}^n\). Then \([\mathbf{v}]_{\beta}=[I]_{\alpha}^{\beta}[\mathbf{v}]_{\alpha}\). Note that \[([I]_{\alpha}^{\beta})_{ij}=\langle \mathbf{v}_j, \mathbf{w}_i\rangle\] and \[([I]_{\alpha}^{\beta})_{ij}^* =\overline{([I]_{\alpha}^{\beta})_{ji}} =\overline{\langle \mathbf{v}_i, \mathbf{w}_j\rangle} =\langle \mathbf{w}_j, \mathbf{v}_i\rangle =([I]_{\beta}^{\alpha})_{ij} =([I]_{\alpha}^{\beta})^{-1}_{ij} \] Therefore, \[\langle [\mathbf{v}]_{\beta}, [\mathbf{w}]_{\beta}\rangle =\langle [I]_{\alpha}^{\beta}[\mathbf{v}]_{\alpha}, [I]_{\alpha}^{\beta}[\mathbf{w}]_{\alpha}\rangle =\langle [\mathbf{v}]_{\alpha}, ([I]_{\alpha}^{\beta})^*[I]_{\alpha}^{\beta}[\mathbf{w}]_{\alpha}\rangle =\langle [\mathbf{v}]_{\alpha}, [\mathbf{w}]_{\alpha}\rangle \]

As I mentioned before, Theorem 6.8 and Theorem 6.9 are tricky. But they appear in many exams. So you still have to know how to prove them. I come up with a method to help you remember these theorems.

We will need a very basic but important theorem (Theorem 6.5).

Theorem 6.5. Let \(V\) be a nonzero finite-dimensional inner product space. Then \(V\) has an orthonormal basis \(\beta\). Furthermore, if \(\beta=\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}\) and \(\mathbf{x}\in V\}\), then \[ \mathbf{x} =\sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{v}_i\rangle \mathbf{v}_i. \]

Now, let us discuss Theorem 6.8 and Theorem 6.9.

Theorem 6.8. Let \(V\) be a finite-dimensional inner product space over \(F\), and let \(g:V\to F\) be a linear transformation. Then there exists a unique vector \(y\in V\) such that \(g(x)=\langle x, y\rangle\) for all \(x\in V\).

I am used to using the following identities to remind me the form of \(y\). Let \(\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}\) be an orthonormal basis for \(F^n\). \[ \begin{array}{lll} \langle x, y\rangle & = & \langle \langle x, \mathbf{v}_1\rangle \mathbf{v}_1+\cdots +\langle x, \mathbf{v}_n\rangle \mathbf{v}_n, \langle y, \mathbf{v}_1\rangle \mathbf{v}_1+\cdots +\langle y, \mathbf{v}_n\rangle \mathbf{v}_n\rangle \\ & = & \langle x, \mathbf{v}_1\rangle \overline{\langle y, \mathbf{v}_1\rangle}+\cdots+\langle x, \mathbf{v}_n\rangle \overline{\langle y, \mathbf{v}_n\rangle} \\ g(x) & = & g(\langle x, \mathbf{v}_1\rangle \mathbf{v}_1+\cdots+\langle x, \mathbf{v}_n\rangle \mathbf{v}_n) \\ & = & \langle x, \mathbf{v}_1\rangle g(\mathbf{v}_1)+\cdots+\langle x, \mathbf{v}_n\rangle g(\mathbf{v}_n) \end{array} \] Compare the terms. To get \(g(x)=\langle x, y\rangle\), we must have \(g(\mathbf{v}_i)=\overline{\langle y, \mathbf{v}_i\rangle}\). Equivalently, \(\langle y, \mathbf{v}_i\rangle=\overline{g(\mathbf{v}_i)}\). Therefore, \[ \begin{array}{lll} y &=& \langle y, \mathbf{v}_1\rangle \mathbf{v}_1+\cdots+\langle y, \mathbf{v}_n\rangle \mathbf{v}_n \\ &=& \overline{g(\mathbf{v}_1)}\mathbf{v}_1+\cdots+\overline{g(\mathbf{v}_n)}\mathbf{v}_n \end{array} \] I have the following diagram. \[ \begin{array}{lll} V & & V \\ \downarrow g & = & \downarrow \langle \cdot, y\rangle \\ F & & F \end{array} \]

Theorem 6.9. Let \(V\) be a finite-dimensional inner product space, and let \(T\) be a linear operator on \(V\). Then there exists a unique function \(T^*:V\to V\) such that \(\langle T(x), y\rangle=\langle x, T^*(y)\rangle\) for all \(x, y\in V\). Furthermore, \(T^*\) is linear.

For applying the lemma, we have to construct a linear functional first and define \(T^*(\mathbf{v})\) to be the \(y\) induced by the lemma. \[ \begin{array}{lll} V & & V \\ \downarrow ? & = & \downarrow \langle \cdot, y\rangle \\ F & & F \end{array} \] How to define the linear functional? Let us observate that \(\langle \cdot, y\rangle=\langle \cdot, T^*(\mathbf{v})\rangle=\langle T(\cdot), \mathbf{v}\rangle\). Thus, \(\langle T(\cdot), \mathbf{v}\rangle\) is the desired linear functional. That is, given \(\mathbf{v}\in V\), we have a linear functional \(\langle T(\cdot), \mathbf{v}\rangle:V\to F\). By the lemma, which induces a unique vector \(y\). Then define \(T^*\) by \(T^*(\mathbf{v})=y\). \[ \begin{array}{lll} V & & V \\ \downarrow \langle T(\cdot), \mathbf{v}\rangle & = & \downarrow \langle \cdot, y\rangle \\ F & & F \end{array} \]

No comments:

Post a Comment