Diamond
Singular Value Decomposition |
→ | Pseudoinverse | ||||
↗ | ↘ | |||||
↗ | ↘ | |||||
Gram-Schmidt Process |
← | ← | Orthogonal Projection |
→ | → | Least Square Problem |
↘ | ↓ | ↗ | ||||
↘ | Householder Reflection |
↗ | ||||
↘ | ↓ | ↗ | ||||
QR-decomposition |
Orthogonal Basis
Anton, Theorem 6.3.2. If S={v1,v2,...,vn} is an orthogonal basis for an inner product space V, and if u is any vector in V, then u=⟨u,v1⟩||v1||2v1+⟨u,v2⟩||v2||2v2+⋯+⟨u,vn⟩||vn||2vn.
Proof: Suppose that u=a1v1+a2v2+⋯+anvn. Then ⟨u,vi⟩=ai⟨vi,vi⟩=ai||vi||2 and ai=⟨u,vi⟩||vi||2
Orthogonal Projection
Anton, Theorem 6.3.4. Let W be a finite-dimensional subspace of an inner product space V. If {w1,w2,...,wr} is an orthogonal basis for W, and u is any vector in V, then projWu=⟨u,w1⟩||w1||2w1+⟨u,w2⟩||w2||2w2+⋯+⟨u,wr⟩||wr||2wr.
Proof: ⟨u,w1⟩||w1||2w1+⟨u,w2⟩||w2||2w2+⋯+⟨u,wr⟩||wr||2wr=⟨projWu+(u−projWu),w1⟩||w1||2w1+⟨projWu+(u−projWu),w2⟩||w2||2w2+⋯+⟨projWu+(u−projWu),wr⟩||wr||2wr⟨u−projWu,wi⟩=0=⟨projWu,w1⟩||w1||2w1+⟨projWu,w2⟩||w2||2w2+⋯+⟨projWu,wr⟩||wr||2wrTheorem 6.3.2=projWu.
Householder Reflections
See Anton Contemporary, sec.7.10.
Gram-Schmidt Process
Anton, p.371. To convert a basis {u1,u2,...,ur} into an orthogonal basis {v1,v2,...,vr}, perform the following computations: vi=ui−⟨ui,v1⟩||v1||2v1−⟨ui,v2⟩||v2||2v2−⋯−⟨ui,vi−1⟩||vi−1||2vi−1
Proof: vi=ui−projspan({v1,v2,...,vi−1})ui. Then by Theorem 6.3.4.
QR-Decomposition
Anton, thm.6.3.7. If A is an m×n matrix with linearly independent column vectors, then A can be factored as A=QR,
Proof:
- Suppose that the column vectors of A are u1,u2,...,un. Apply the Gram-Schmidt process to transform u1,u2,...,un into an orthonormal set q1,q2,...,qn. Then denote
A=(u1|u2|⋯|un) and Q=(q1|q2|⋯|qn)
-
Express u1,u2,...,un by q1,q2,...,qn by Theorem 6.3.2,
u1=⟨u1,q1⟩q1+⟨u1,q2⟩q2+⋯+⟨u1,qn⟩qnu2=⟨u2,q1⟩q1+⟨u2,q2⟩q2+⋯+⟨u2,qn⟩qn⋮⋮⋮un=⟨un,q1⟩q1+⟨un,q2⟩q2+⋯+⟨un,qn⟩qnEquivalently, (u1|u2|⋯|un)=(q1|q2|⋯|qn)(⟨u1,q1⟩⟨u2,q1⟩⋯⟨un,q1⟩⟨u1,q2⟩⟨u2,q2⟩⋯⟨un,q2⟩⋮⋮⋱⋮⟨u1,qn⟩⟨u2,qn⟩⋯⟨un,qn⟩).Note that the (i,j)-entry of the last matrix is ⟨uj,qi⟩.
-
Since q1,q2,...,qn were obtained by Gram-Schmidt process, we have
qi=ui−⟨ui,q1⟩||q1||2q1−⟨ui,q2⟩||q2||2q2−⋯−⟨ui,qi−1⟩||qi−1||2qi−1.Equivalently, ui=⟨ui,q1⟩||q1||2q1+⟨ui,q2⟩||q2||2q2+⋯+⟨ui,qi−1⟩||qi−1||2qi−1+qiThis follows that ⟨ui,qj⟩=0 if i<j.Therefore, A=(u1|u2|⋯|un)=(q1|q2|⋯|qn)(⟨u1,q1⟩⟨u2,q1⟩⋯⟨un,q1⟩0⟨u2,q2⟩⋯⟨un,q2⟩⋮⋮⋱⋮00⋯⟨un,qn⟩)def.=QR.
-
Furthermore, if ⟨ui,qi⟩=0 for some i,
then ui=⟨ui,q1⟩q1+⟨ui,q2⟩q2+⋯+⟨ui,qi−1⟩qi−1∈span({q1,q2,...,qi−1})=span({u1,u2,...,ui−1}).Which contraries to the independency of {u1,u2,...,un}. Therefore, ⟨ui,qi⟩≠0 for all i and detR=⟨u1,q1⟩⟨u2,q2⟩⋯⟨un,qn⟩≠0 and R is invertible.
Least Squares Problem
Minimize √[y1−(ax1+b)]2+⋯+[yn−(axn+b)]2⇔Minimize ||[y1−(ax1+b)⋮yn−(axn+b)]||⇔Minimize ||[y1⋮yn]b−[x11⋮⋮xn1]A[ab]x||⇔Minimize ||b−Ax||注意到是 Minimize √[y1−(a1x+b)]2+⋯+[yn−(axn+b)]2,不是 Minimize |y1−(a1x+b)|+⋯+|yn−(axn+b)| ,而且兩者並不等價,例如 3+4≤1+5⇍32+42≤12+52。
Anton, p.379. Given a linear system Ax=b of m equations in n unknowns, find a vector x in Rn that minimizes ||b−Ax|| with respect to the Euclidean inner product on Rm. We call such a vector, if it exists, a least squares solution of Ax=b, we call b−Ax the least squares error vector, and we call ||b−Ax|| the least squares error.
There are three methods to find x.
- Anton, p.380. x is the solution of Ax=projCS(A)b. 但這個方法不太實用,因為 projCS(A)b 並不容易求,要求的話得先用Gram-Schmidt求出 CS(A) 的一組orthonormal basis。
- Anton, p.380. x is the solution of AtAx=Atb.
Proof: Ax=projCS(A)b⇒b−Ax=b−projCS(A)b⇒At(b−Ax)=At(b−projCS(A)b)(b−projCS(A)b)∈CS(A)⊥⇒At(b−Ax)=0⇒AtAx=Atb我個人使用的記憶法是一稅在逼,a tax at b。
如果 A 的column是linearly independent,則 AtA 是invertible,於是可以得到 x=(AtA)−1Atb。
Proof: We show that N(AtA)=0. Then by Dimension Theorem, rank(AtA)=n and AtA is invertible. If(AtA)x=At(Ax)=0⇒Ax∈N(At)∩CS(A)N(At)⊥CS(A)⇒Ax=0the columns of A are linearly independent⇒x=0 - Anton, thm.6.4.6. Let A=QR be a QR-decomposition of A. Then x=R−1Qtb.
Proof: This follows immediately from x=(AtA)−1Atb and A=QR.
Singular Value Decomposition
Mnemonic: vi are orthonormal basis for Fn consisting of eigenvectors of A∗A and λi are eigenvalues for A∗A and rank A=r. (Av1||Av1|||Av2||Av2|||⋯)(||Av1||=√λ1||Av2||=√λ2⋱||Avr||=√λr0⋱0)=A(v1|v2|⋯|vn)Um×mΣm×n=Am×nVn×n
- Anton, sec.9.4.
- Friedberg, thm.9.26
- Friedberg, thm.9.27
- Anton Contemporary, sec.8.6
Pseudoinverse
- Friedberg, p.413, def.
- Friedberg, thm.6.29: A=UΣV∗,A†=VΣ†U∗
- Friedberg, thm.6.30(b): Ax=b,ˆx=A†b
No comments:
Post a Comment