Orthogonal Projection

Orthogonal Projection

Diamond

Singular Value
Decomposition
Pseudoinverse
Gram-Schmidt
Process
Orthogonal
Projection
Least Square
Problem
Householder
Reflection
QR-decomposition

Orthogonal Basis

Anton, Theorem 6.3.2. If S={v1,v2,...,vn} is an orthogonal basis for an inner product space V, and if u is any vector in V, then u=u,v1||v1||2v1+u,v2||v2||2v2++u,vn||vn||2vn.

Proof: Suppose that u=a1v1+a2v2++anvn. Then u,vi=aivi,vi=ai||vi||2 and ai=u,vi||vi||2

Orthogonal Projection

Anton, Theorem 6.3.4. Let W be a finite-dimensional subspace of an inner product space V. If {w1,w2,...,wr} is an orthogonal basis for W, and u is any vector in V, then projWu=u,w1||w1||2w1+u,w2||w2||2w2++u,wr||wr||2wr.

Proof: u,w1||w1||2w1+u,w2||w2||2w2++u,wr||wr||2wr=projWu+(uprojWu),w1||w1||2w1+projWu+(uprojWu),w2||w2||2w2++projWu+(uprojWu),wr||wr||2wruprojWu,wi=0=projWu,w1||w1||2w1+projWu,w2||w2||2w2++projWu,wr||wr||2wrTheorem 6.3.2=projWu.

注意到Theorem 6.3.2的 u 是在 V 中,Theorem 6.3.4的 u 並不在 W 中,但兩者的公式幾乎是一樣的。

Householder Reflections

See Anton Contemporary, sec.7.10.

Gram-Schmidt Process

Anton, p.371. To convert a basis {u1,u2,...,ur} into an orthogonal basis {v1,v2,...,vr}, perform the following computations: vi=uiui,v1||v1||2v1ui,v2||v2||2v2ui,vi1||vi1||2vi1

Proof: vi=uiprojspan({v1,v2,...,vi1})ui. Then by Theorem 6.3.4.

QR-Decomposition

Anton, thm.6.3.7. If A is an m×n matrix with linearly independent column vectors, then A can be factored as A=QR,

where Q is an m×n matrix with orthonormal column vectors, and R is an n×n invertible upper triangular matrix.

Proof:

  • Suppose that the column vectors of A are u1,u2,...,un. Apply the Gram-Schmidt process to transform u1,u2,...,un into an orthonormal set q1,q2,...,qn. Then denote A=(u1|u2||un) and Q=(q1|q2||qn)
  • Express u1,u2,...,un by q1,q2,...,qn by Theorem 6.3.2, u1=u1,q1q1+u1,q2q2++u1,qnqnu2=u2,q1q1+u2,q2q2++u2,qnqnun=un,q1q1+un,q2q2++un,qnqn
    Equivalently, (u1|u2||un)=(q1|q2||qn)(u1,q1u2,q1un,q1u1,q2u2,q2un,q2u1,qnu2,qnun,qn).
    Note that the (i,j)-entry of the last matrix is uj,qi.
  • Since q1,q2,...,qn were obtained by Gram-Schmidt process, we have qi=uiui,q1||q1||2q1ui,q2||q2||2q2ui,qi1||qi1||2qi1.
    Equivalently, ui=ui,q1||q1||2q1+ui,q2||q2||2q2++ui,qi1||qi1||2qi1+qi
    This follows that ui,qj=0 if i<j.
    Therefore, A=(u1|u2||un)=(q1|q2||qn)(u1,q1u2,q1un,q10u2,q2un,q200un,qn)def.=QR.
  • Furthermore, if ui,qi=0 for some i, then ui=ui,q1q1+ui,q2q2++ui,qi1qi1span({q1,q2,...,qi1})=span({u1,u2,...,ui1}).
    Which contraries to the independency of {u1,u2,...,un}. Therefore, ui,qi0 for all i and detR=u1,q1u2,q2un,qn0 and R is invertible.

Least Squares Problem

Minimize [y1(ax1+b)]2++[yn(axn+b)]2Minimize ||[y1(ax1+b)yn(axn+b)]||Minimize ||[y1yn]b[x11xn1]A[ab]x||Minimize ||bAx||

注意到是 Minimize [y1(a1x+b)]2++[yn(axn+b)]2,不是 Minimize |y1(a1x+b)|++|yn(axn+b)| ,而且兩者並不等價,例如 3+41+532+4212+52

Anton, p.379. Given a linear system Ax=b of m equations in n unknowns, find a vector x in Rn that minimizes ||bAx|| with respect to the Euclidean inner product on Rm. We call such a vector, if it exists, a least squares solution of Ax=b, we call bAx the least squares error vector, and we call ||bAx|| the least squares error.

There are three methods to find x.

  1. Anton, p.380. x is the solution of Ax=projCS(A)b.
    但這個方法不太實用,因為 projCS(A)b 並不容易求,要求的話得先用Gram-Schmidt求出 CS(A) 的一組orthonormal basis。
  2. Anton, p.380. x is the solution of AtAx=Atb.
    Proof: Ax=projCS(A)bbAx=bprojCS(A)bAt(bAx)=At(bprojCS(A)b)(bprojCS(A)b)CS(A)At(bAx)=0AtAx=Atb
    我個人使用的記憶法是一稅在逼,a tax at b。
    如果 A 的column是linearly independent,則 AtA 是invertible,於是可以得到 x=(AtA)1Atb
    Proof: We show that N(AtA)=0. Then by Dimension Theorem, rank(AtA)=n and AtA is invertible. If(AtA)x=At(Ax)=0AxN(At)CS(A)N(At)CS(A)Ax=0the columns of A are linearly independentx=0
  3. Anton, thm.6.4.6. Let A=QR be a QR-decomposition of A. Then x=R1Qtb.
    Proof: This follows immediately from x=(AtA)1Atb and A=QR.

Singular Value Decomposition

Mnemonic: vi are orthonormal basis for Fn consisting of eigenvectors of AA and λi are eigenvalues for AA and rank A=r. (Av1||Av1|||Av2||Av2|||)(||Av1||=λ1||Av2||=λ2||Avr||=λr00)=A(v1|v2||vn)Um×mΣm×n=Am×nVn×n

  • Anton, sec.9.4.
  • Friedberg, thm.9.26
  • Friedberg, thm.9.27
  • Anton Contemporary, sec.8.6

Pseudoinverse

  • Friedberg, p.413, def.
  • Friedberg, thm.6.29: A=UΣV,A=VΣU
  • Friedberg, thm.6.30(b): Ax=b,ˆx=Ab

No comments:

Post a Comment