Simple Linear Regression
Table of Contents
- Formulas
- Relationships among SSE, SSR, SST and s_x, s_y, s_xy
- Simple Linear Regression in Statistics and Least Square Line in Linear Algebra
- Simple Linear Regression in R---Syntax
- Simple Linear Regression in R---Results
- Computing F distribution and T distribution
Formulas
The page numbers refer to Anderson's Statistics for Business and Economics.
ˆy=b0+b1x | p.656, (14.3). | |
b1=∑ni=1(xi−¯x)(yi−¯y)∑ni=1(xi−¯x)2 | p.660, (14.7). | |
b0=¯y−b1¯x | p.660, (14.6). | Note that this formula is very similar to ˆy=b0+b1x. |
SSE=∑ni=1(yi−ˆyi)2 | p.668, (14.8). | |
SSR=∑ni=1(ˆyi−¯y)2 | p.669, (14.10). | |
SST=∑ni=1(yi−¯y)2 | p.669, (14.9). | |
SSE+SSR=SST | p.679, (14.11). | |
ˆσ=√SSEn−2 | p.677, (14.16). | |
ˆσb1=ˆσ√∑ni=1(xi−¯x)2 | p.678, (14.18). | |
t=b1−β1ˆσb1H0:β1=0=b1ˆσb1 | p.679, (14.19). | |
r2=SSRSST | p.671, (14.12). | |
f=SSR/1SSE/(n−2) | p.680, (14.21). |
sx=√∑(xi−ˉx)2n−1 | (3.8), (3.9). |
sy=√∑(yi−ˉy)2n−1 | (3.8), (3.9). |
sxy=∑(xi−ˉx)(yi−ˉy)n−1 | (3.13). |
rxy=sxysxsy | (3.15). |
Relationships among SSE, SSR, SST and sx,sy,sxy

ˆσ,ˆσb1 沒列入。SSE=(n−1)(s2xs2y−s2xys2x) 也沒列入,但不需要。
Simple Linear Regression in Statistics and Least Square Line in Linear Algebra
雖然統計學中的迴歸直線跟線性代數中的最小平方直線兩者的公式看起來不一樣,但在這裡證明其實是相同的。
A=[x11x21⋮⋮xn1]AtA=[x1x2⋯xn11⋯1][x11x21⋮⋮xn1]=[∑x2i∑xi∑xin](AtA)−1=1n∑x2i−(∑xi)2[n−∑xi−∑xi∑x2i](AtA)−1At=1n∑x2i−(∑xi)2[n−∑xi−∑xi∑x2i][x1x2⋯xn11⋯1]=1n∑x2i−(∑xi)2[nx1−∑xinx2−∑xi⋯nxn−∑xi−x1∑xi+∑x2i−x2∑xi+∑x2i⋯−xn∑xi+∑x2i]=1n∑x2i−n2ˉx2[nx1−nˉxnx2−nˉx⋯nxn−nˉx−x1nˉx+n∑x2in−x2nˉx+n∑x2in⋯−xnnˉx+n∑x2in]=1∑x2i−nˉx2[x1−ˉxx2−ˉx⋯xn−ˉx−x1ˉx+∑x2in−x2ˉx+∑x2in⋯−xnˉx+∑x2in](AtA)−1Aty=1∑x2i−nˉx2[x1−ˉxx2−ˉx⋯xn−ˉx−x1ˉx+∑x2in−x2ˉx+∑x2in⋯−xnˉx+∑x2in][y1y2⋮yn]=1∑x2i−nˉx2[∑(xi−ˉx)yi∑(−xiˉx+∑x2in)yi]
Simple Linear Regression in R---Syntax
x=c(x, ...) y=c(y, ...) model=lm(y~x) summary(model)
更多模型的指令參考這裡,備份如下
Syntax | Model |
---|---|
y~x | y=β0+β1x |
y~x+I(x^2) | y=β0+β1x+β2x2 |
y~x1+x2 | y=β0+β1x1+β2x2 |
y~x1*x2 | y=β0+β1x1+β2x2+β3x1x2 |
Simple Linear Regression in R---Results
Coefficients: | |||||
Estimate | Std. Error | t value | Pr(>|t|) | ||
(Intercept) | b0=¯y−b1¯x | *** | |||
x | b1=∑ni=1(xi−¯x)(yi−¯y)∑ni=1(xi−¯x)2 | ˆσb1=ˆσ√∑ni=1(xi−¯x)2 | t=b1ˆσb1 | p-value associated with t=2(1−T(t)) | *** |
---
Signif. codes: 解釋上面的***
Residual standard error: ˆσ=√SSEn−2 on n−2 degree of freedom
Multiple R-squared: r2=SSRSST, Adjusted R-squared:
F-statistic: f=SSR/1SSE/(n−2), p-value: p-value associated with f=1−F(f)
The p-values associated with t is 2(1−T(t)), where T is the cumulative distribution function of t(n−1).
The p-values associated with f is 1−F(f), where F is the cumulative distribution function of F(1,n−2).
Computing F distribution and T distribution
可以利用Wolfram Alpha輸入下面指令。
CDF[FRatioDistribution[n, m], x] CDF[StudentTDistribution[n], x]
No comments:
Post a Comment