Proofs of some formulas in Anderson's Statistics for Business and Economics

Proofs of some formulas in Anderson's Statistics for Business and Economics

Proofs of some formulas in Anderson's Statistics for Business and Economics

(9.7) Sample Size for a One-Tailed Hypothesis Test about a Population Mean

\[ n=\frac{(z_{\alpha}+z_{\beta})^2 \sigma^2}{(\mu_0-\mu_a)^2} \] In a two-tailed hypothesis test, use (9.7) with \(z_{\alpha/2}\) replacing \(z_{\alpha}\).

Proof: Note that we don't have to change \(\beta\) in a two-tailed hypothesis.

(10.7) Degree of Freedom: t Distribution with Two Independent Random Samples

\[ \text{d.f.}=\frac{\left(\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1-1}\left(\frac{s_1^2}{n_1}\right)^2+\frac{1}{n_2-1}\left(\frac{s_2^2}{n_2}\right)^2} \]

Proof: See [Casella, p.409, exe.8.42].

(13.12) Test Statistic for the Equality of k Population Means

\[ F=\frac{\text{MSTR}}{\text{MSE}} \]

Proof: This proof is from [Hogg, PSI, sec.9.3]. Recall that \[ \begin{array}{cccccc} \text{treatment 1} & \text{treatment 2} & \cdots & \text{treatment k} \\ x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_1 1} & x_{n_2 2} & \cdots & x_{n_k k} \\ \downarrow & \downarrow & \cdots & \downarrow & \searrow \\ \overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_k & & \bar{\bar{x}} \end{array} \] Recall the following formulas \[ \begin{array}{rcl} \text{SSE} &\stackrel{\text{(13.11)}}{=}& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2=\sum_{j=1}^{k} (n_j-1)s_j^2 \\ \text{SSTR} &\stackrel{\text{(13.8)}}{=}& \sum_{j=1}^{k} n_j(\overline{x}_j-\bar{\bar{x}})^2 \\ \text{SST} &\stackrel{\text{(13.13)}}{=}& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\bar{\bar{x}})^2 \\ \text{MSE} &\stackrel{\text{(13.10)}}{=}& \frac{\text{SSE}}{n-k} \\ \text{MSTR} &\stackrel{\text{(13.7)}}{=}& \frac{\text{SSTR}}{k-1} \\ \end{array} \] At first, \[ \begin{array}{ll} & \frac{\text{SST}}{n-1}=\frac{\sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\bar{\bar{x}})^2}{n-1}\stackrel{\text{用全部來算sample variance}}{=}S^2 \\ \stackrel{\text{[Casella, p.218, thm.5.3.1.(c)]}}{\Rightarrow} &\frac{\text{SST}}{\sigma^2}=\frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1} \end{array} \] Then \[ \begin{array}{cl} & \frac{\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2}{n_j-1}\stackrel{\text{用單行來算sample variance}}{=}S^2 \\ \stackrel{\text{[Casella, p.218, thm.5.3.1.(c)]}}{\Rightarrow}& \frac{\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2}{\sigma^2}=\frac{(n_j-1)S^2}{\sigma^2}\sim \chi^2_{n_j-1} \\ \stackrel{\text{[Casella, p.219, lem.5.3.2.(b)]}}{\Rightarrow}& \frac{\text{SSE}}{\sigma^2}=\sum_{j=1}^{k}\frac{\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2}{\sigma^2}\sim \chi^2_{(n_1-1)+(n_2-1)+\cdots +(n_k-1)}=\chi^2_{n-k} \\ \stackrel{\text{[Casella, p.155, thm.4.2.12]}}{\Rightarrow}& \frac{\text{SSTR}}{\sigma^2}=\frac{\text{SST}}{\sigma^2}-\frac{\text{SSE}}{\sigma^2}\sim \chi^2_{k-1} \\ \Rightarrow & \frac{\text{MSTR}}{\text{MSE}}=\frac{\text{SSTR}/(k-1)}{\text{SSE}/(n-k)}=\frac{(\text{SSTR}/\sigma^2)/(k-1)}{(\text{SSE}/\sigma^2)/(n-k)}\sim F(k-1, n-k) \end{array} \]

(13.14) SST=SSTR+SSE

\[ \text{SST}=\text{SSTR}+\text{SSE} \]

Proof: Recall that \[ \begin{array}{cccccc} \text{treatment 1} & \text{treatment 2} & \cdots & \text{treatment k} \\ x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n_1 1} & x_{n_2 2} & \cdots & x_{n_k k} \\ \downarrow & \downarrow & \cdots & \downarrow & \searrow \\ \overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_k & & \bar{\bar{x}} \end{array} \] Recall the following formulas \[ \begin{array}{rcl} \text{SSE} &\stackrel{\text{(13.11)}}{=}& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2=\sum_{j=1}^{k} (n_j-1)s_j^2 \\ \text{SSTR} &\stackrel{\text{(13.8)}}{=}& \sum_{j=1}^{k} n_j(\overline{x}_j-\bar{\bar{x}})^2 \\ \text{SST} &\stackrel{\text{(13.13)}}{=}& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\bar{\bar{x}})^2 \end{array} \] Then \[ \begin{array}{lll} \text{SST} &=& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\bar{\bar{x}})^2 \\ &=& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j+\overline{x}_j-\bar{\bar{x}})^2 \\ &=& \sum_{j=1}^{k}\sum_{i=1}^{n_j}\left[(x_{ij}-\overline{x}_j)^2+2(x_{ij}-\overline{x}_j)(\overline{x}_j-\bar{\bar{x}})+(\overline{x}_j-\bar{\bar{x}})^2\right] \\ &=& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2+2\sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)(\overline{x}_j-\bar{\bar{x}})+\sum_{j=1}^{k}\sum_{i=1}^{n_j}(\overline{x}_j-\bar{\bar{x}})^2 \\ &=& \sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)^2+2\sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)(\overline{x}_j-\bar{\bar{x}})+\sum_{j=1}^{k}n_j(\overline{x}_j-\bar{\bar{x}})^2 \\ &=& \text{SSE}+2\sum_{j=1}^{k}\sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)(\overline{x}_j-\bar{\bar{x}})+\text{SSTR} \\ \end{array} \] We show that the middle term is zero. Indeed, \[ \begin{array}{lll} \sum_{i=1}^{n_j}(x_{ij}-\overline{x}_j)(\overline{x}_j-\bar{\bar{x}}) &=& \sum_{i=1}^{n_j}x_{ij}\overline{x}_j-\sum_{i=1}^{n_j}\overline{x}_j^2-\sum_{i=1}^{n_j}x_{ij}\bar{\bar{x}}+\sum_{i=1}^{n_j}\overline{x}_j\bar{\bar{x}} \\ &=& n_j \overline{x}_j^2-n_j \overline{x}_j^2-n_j \overline{x}_j \bar{\bar{x}}+n_j \overline{x}_j \bar{\bar{x}} \\ &=& 0. \end{array} \]

(13.16) Fisher's LSD

\[ t=\frac{\overline{x}_i-\overline{x}_j}{\sqrt{\text{MSE}\left(\frac{1}{n_i}+\frac{1}{n_j}\right)}} \]

Proof: See [Casella, sec.11.2].

(14.11) Relationship among SST, SSR, and SSE

\[ \text{SST}=\text{SSR}+\text{SSE} \]

Proof: Recall that \[ \begin{array}{rcl} \text{SSE} &\stackrel{\text{(14.8)}}{=}& \sum(y_i-\hat{y}_i)^2 \\ \text{SST} &\stackrel{\text{(14.9)}}{=}& \sum(y_i-\overline{y})^2 \\ \text{SSR} &\stackrel{\text{(14.10)}}{=}& \sum(\hat{y}_i-\overline{y})^2. \end{array} \] Note that \[ \begin{array}{rcl} \text{SST} &=& \sum(y_i-\overline{y})^2 \\ &=& \sum(y_i-\hat{y}_i+\hat{y}_i-\overline{y})^2 \\ &=& \sum[(y_i-\hat{y}_i)^2+2(y_i-\hat{y}_i)(\hat{y}_i-\overline{y})+(\hat{y}_i-\overline{y})^2] \\ &=& \sum(y_i-\hat{y}_i)^2+\sum 2(y_i-\hat{y}_i)(\hat{y}_i-\overline{y})+\sum(\hat{y}_i-\overline{y})^2 \\ &=& \text{SSE}+\sum 2(y_i-\hat{y}_i)(\hat{y}_i-\overline{y})+\text{SSR}. \end{array} \] It suffices to show that \[ \sum (y_i-\hat{y}_i)(\hat{y}_i-\overline{y})=0. \] Recall the following formulas \[ \begin{array}{rcl} \hat{y}_i &\stackrel{\text{(14.3)}}{=}& b_0+b_1 x_i \\ b_1 &\stackrel{\text{(14.6)}}{=}& \frac{\sum(x_i-\overline{x})(y_i-\overline{y})}{\sum(x_i-\overline{x})^2} \\ b_0 &\stackrel{\text{(14.7)}}{=}& \overline{y}-b_1\overline{x}. \end{array} \] Thus, \[ \begin{array}{rcl} (\star)\to \sum (y_i-\hat{y}_i)(\hat{y}_i-\overline{y}) &\stackrel{\text{(14.3)}}{=}& \sum(y_i-b_0-b_1 x_i)(b_1 x_i+b_0-\overline{y}) \\ &\stackrel{\text{(14.7)}}{=}& \sum(y_i-\overline{y}+b_1\overline{x}-b_1 x_i)(b_1 x_i+\overline{y}-b_1 \overline{x}-\overline{y}) \\ &=& \sum\left[(y_i-\overline{y})-b_1(x_i-\overline{x})\right]\left[b_1(x_i-\overline{x})\right] \\ &=& b_1\sum(x_i-\overline{x})(y_i-\overline{y})-b_1^2\sum(x_i-\overline{x})^2 \\ &\stackrel{\text{(14.6)}}{=}& 0. \end{array} \]

(14.13) Sample Correlation Coefficient

\[ \begin{array}{lll} r_{xy} &=& (\text{sign of }b_1)\sqrt{\text{Coefficient of determination}} \\ &=& (\text{sign of }b_1)\sqrt{r^2} \end{array} \]

Proof: Recall the following formulas \[ \begin{array}{rcl} s_x&\stackrel{\text{(3.8), (3.9)}}{=}& \sqrt{\frac{\sum(x_i-\overline{x})^2}{n-1}} \\ s_y&\stackrel{\text{(3.8), (3.9)}}{=}& \sqrt{\frac{\sum(y_i-\overline{y})^2}{n-1}} \\ s_{xy}&\stackrel{\text{(3.13)}}{=}& \frac{\sum(x_i-\overline{x})(y_i-\overline{y})}{n-1} \\ r_{xy}&\stackrel{\text{(3.15)}}{=}& \frac{s_{xy}}{s_x s_y} \\ \text{SST} &\stackrel{\text{(14.9)}}{=}& \sum(y_i-\overline{y})^2 \\ \text{SSR} &\stackrel{\text{(14.10)}}{=}& \sum(\hat{y}_i-\overline{y})^2 \\ r^2 &\stackrel{\text{(14.12)}}{=}&\frac{\text{SSR}}{\text{SST}}. \end{array} \] We express \(\text{SSR}\) and \(\text{SST}\) in term of \(s_x, s_y\) and \(s_{xy}\). It is easy to see that \[ \text{SST}=(n-1)s_y^2. \] In addition, \[ \begin{array}{rcl} \text{SSR} &=& \sum(\hat{y}_i-\overline{y})^2 \\ &\stackrel{\text{See }(\star)\text{ in this webpage}}{=}& \sum(\hat{y}_i-\overline{y})^2+\sum(y_i-\hat{y}_i)(\hat{y}_i-\overline{y}) \\ &=& \sum(\hat{y}_i-\overline{y})[(\hat{y}_i-\overline{y})+(y_i-\hat{y}_i)] \\ &=& \sum(\hat{y}_i-\overline{y})(y_i-\overline{y}) \\ &\stackrel{\text{(14.3)}}{=}& \sum(b_0+b_1 x_i-\overline{y})(y_i-\overline{y}) \\ &\stackrel{\text{(14.7)}}{=}& \sum(b_1 x_i-b_1 \overline{x})(y_i-\overline{y}) \\ &=& b_1 \sum(x_i-\overline{x})(y_i-\overline{y}) \leftarrow (\star\star) \\ &\stackrel{\text{(14.6)}}{=}& \frac{\left[\sum(x_i-\overline{x})(y_i-\overline{y})\right]^2}{\sum(x_i-\overline{x})^2} \\ &=& \frac{(n-1)^2 s_{xy}^2}{(n-1)s_x^2}. \end{array} \] Therefore, \[ r^2 =\frac{\text{SSR}}{\text{SST}} =\frac{(n-1)^2 s_{xy}^2}{(n-1)s_x^2 (n-1)s_y^2} =\frac{s_{xy}^2}{s_x^2 s_y^2} =r_{xy}^2. \] This follows that \[ r_{xy}=\pm \sqrt{r^2}. \] Note that \[ b_1=\frac{\sum(x_i-\overline{x})(y_i-\overline{y})}{\sum(x_i-\overline{x})^2}=\frac{(n-1)s_{xy}}{(n-1)s_x^2}=\frac{s_{xy}}{s_x^2}. \] Which means that \(b_1\) and \(s_{xy}\) have the same sign. On the other hand, \(s_x\) and \(s_y\) are nonnegative. So \(\frac{s_{xy}}{s_x s_y}\) and \(b_1\) have the same sign. Then we have \[ r_{xy}=(\text{sign of }b_1)\sqrt{r^2}. \]

(14.15) Mean Square Error (Estimate of \(\sigma^2\))

\[ s^2=\text{MSE}=\frac{\text{SSE}}{n-2} \]

Proof: See [Casella, p.552, (11.3.29).

(14.19) Test Statistic for t Test for Significance in Simple Linear Regression

\[ t=\frac{b_1}{\hat{\sigma}_{b_1}} \]

Proof: By [Casella, p.553, thm.11.3.3], we have \[ b_1\sim \text{n}\left(\beta_1, \frac{\sigma^2}{\sum (x_i-\overline{x})^2}\right) \text{ and } \frac{\text{SSE}}{\sigma^2}\sim \chi^2(n-2). \] This follows that \[ \frac{b_1-\beta_1}{\sigma/\sqrt{\sum(x_i-\overline{x})^2}}\sim \text{n}(0, 1) \] and \[ \frac{b_1-\beta_1}{\sigma/\sqrt{\sum(x_i-\overline{x})^2}}\Big/\sqrt{\frac{\text{SSE}/\sigma^2}{n-2}} \stackrel{\hat{\sigma}=\sqrt{\frac{\text{SSE}}{n-2}}}{=}\frac{b_1-\beta_1}{\hat{\sigma}/\sqrt{\sum(x_1-\overline{x})^2}} =\frac{b_1-\beta_1}{\hat{\sigma}_{b_1}} \sim t(n-2) \]

(14.21) Test Statistic for F Test for Significance in Simple Linear Regression

\[ F=\frac{\text{MSR}}{\text{MSE}} \]

Proof: By [Casella, p.553, thm.11.3.3], we have \[ b_1\sim \text{n}\left(\beta_1, \frac{\sigma^2}{\sum (x_i-\overline{x})^2}\right) \text{ and } \frac{\text{SSE}}{\sigma^2}\sim \chi^2(n-2). \] Thus, \[ \begin{array}{cl} & \frac{b_1-\beta_1}{\frac{\sigma}{\sqrt{\sum(x_i-\overline{x})^2}}}=\frac{(b_1-\beta_1)\sqrt{\sum(x_i-\overline{x})^2}}{\sigma}\sim \text{n}(0, 1) \\ \stackrel{\text{[Casella, p.53, exa.2.1.9]}}{\Rightarrow} & \frac{(b_1-\beta_1)^2\sum(x_i-\overline{x})^2}{\sigma^2}\sim \chi^2(1) \\ \stackrel{H_0:\beta_1=0}{\Rightarrow} & \frac{b_1^2\sum(x_i-\overline{x})^2}{\sigma^2}\sim \chi^2(1) \\ \stackrel{\text{(14.6)}}{\Rightarrow} & \frac{b_1 \sum(x_i-\overline{x})(y_i-\overline{y})}{\sigma^2}\sim \chi^2(1) \\ \stackrel{\text{See }(\star\star)\text{ in this webpage}}{\Rightarrow} & \frac{\text{SSR}}{\sigma^2}\sim \chi^2(1) \end{array} \] Therefore, \[ \frac{\text{MSR}}{\text{MSE}} =\frac{\text{SSR}/1}{\text{SSE}/(n-2)} =\frac{\frac{\text{SSR}}{\sigma^2}\big/ 1}{\frac{\text{SSE}}{\sigma^2}\big/(n-2)} \sim F(1, n-2). \] We can also apply the square of a t distribution is a F distribution. See [Casella, p.225, thm.5.3.8]. That is, \[ \begin{array}{rcl} \frac{\text{MSR}}{\text{MSE}} &=& \frac{\text{SSR}/1}{\text{SSE}/(n-2)} \\ &=& \frac{\frac{\text{SSR}}{\sigma^2}\big/ 1}{\frac{\text{SSE}}{\sigma^2}\big/(n-2)} \\ &=& \frac{b_1^2\sum(x_i-\overline{x})^2}{\sigma^2} \big/ \frac{\text{SSE}/\sigma^2}{n-2} \\ &=& \left(\frac{b_1-\beta_1}{\sigma/\sqrt{\sum(x_i-\overline{x})^2}}\Big/\sqrt{\frac{\text{SSE}/\sigma^2}{n-2}}\right)^2 \\ &\stackrel{\text{(14.19)}}{\sim}& [t(n-2)]^2 \\ &=& F(1, n-2). \end{array} \]

(14.27) Prediction Interval for y*

\[ \hat{y}^*\pm t_{\alpha/2}s_{\text{pred}} =\hat{y}^*\pm t_{\alpha/2}s\sqrt{1+\frac{1}{n}+\frac{(x^*-\overline{x})^2}{\sum(x_i-\overline{x})^2}} =\hat{y}^*\pm t_{\alpha/2}\sqrt{\frac{\text{SSE}}{n-2}}\sqrt{1+\frac{1}{n}+\frac{(x^*-\overline{x})^2}{\sum(x_i-\overline{x})^2}} \] where the confidence coefficient is \(1-\alpha\) and \(t_{\alpha/2}\) is based on the \(t\) distribution with \(n-2\) degrees of freedom.

Proof: See [Casella, p.559, (11.3.41)].

(14.30) Standard Deviation of the ith Residual

\[ s_{y_i-\hat{y}_i}=s\sqrt{1-h_i}, s\stackrel{\text{(14.16)}}{=}\sqrt{\frac{\text{SSE}}{n-2}}=\sqrt{\frac{\sum(y_i-\hat{y}_i)}{n-2}}, h_i=\frac{1}{n}+\frac{(x_i-\overline{x})^2}{\sum(x_i-\overline{x})^2} \]

Proof: By [Casella, p.552, (11.3.28), \[ \text{Var}(y_i-\hat{y}_i) =\left[ \frac{n-2}{n}+\frac{1}{S_{xx}}\left(\frac{1}{n}\sum_{j=1}^{n}x_j^2+x_i^2-2(x_i-\overline{x})^2-2x_i\overline{x}\right) \right]\sigma^2, \] where \(S_{xx}=\sum_{i=1}^{n}(x_i-\overline{x})^2\), see [Casella, p.541, (11.3.6). By [Anderson, p.667, (14.16)], \(s\) is an estimator of \(\sigma\), so we substitute \(\sigma\) by \(s\). Then we have \[ s^2_{y_i-\hat{y}_i}=\left[ \frac{n-2}{n}+\frac{1}{S_{xx}}\left(\frac{1}{n}\sum_{j=1}^{n}x_j^2+x_i^2-2(x_i-\overline{x})^2-2x_i\overline{x}\right) \right]s^2 \] To prove \(s_{y_i-\hat{y}_i}=s\sqrt{1-h_i}\), it suffices to check that \[ 1-h_i=1-\frac{1}{n}-\frac{(x_i-\overline{x})^2}{\sum(x_i-\overline{x})^2} =\frac{n-2}{n}+\frac{1}{S_{xx}}\left(\frac{1}{n}\sum_{j=1}^{n}x_j^2+x_i^2-2(x_i-\overline{x})^2-2x_i\overline{x}\right) \]

(14.33) Leverage of Observation i

\[ h_i=\frac{1}{n}+\frac{(x_i-\bar{x})^2}{\sum(x_i-\bar{x})^2} \]

Proof: See Casella, subsec.11.3.5.

(15.9) Adjusted Multiple Coefficient of Determination

\[ R_{\text{a}}^2=1-(1-R^2)\frac{n-1}{n-p-1} \]

Proof: 這個公式也可以表示成 \[ R_{\text{a}}^2 =1-(1-R^2)\frac{n-1}{n-p-1} =1-\left(1-\frac{\text{SSR}}{\text{SST}}\right)\frac{n-1}{n-p-1} =1-\frac{\text{SSE}}{\text{SST}}\times\frac{n-1}{n-p-1} \] Hastie在An Introduction to Statistical Learning中的解釋是(p.212, line -1):The intuition behind the adjusted \(R^2\) is that once all of the correct variables have been included in the model, adding additional noise variables will lead to only a very small decrease in \(\text{RSS}\). Since adding noise variables leads to an increase in \(d\), such variables will lead to an increase in \(\frac{\text{RSS}}{n-d-1}\), and consequently a decrease in the adjusted \(R^2\). Therefore, in theory, the model with the largest adjusted \(R^2\) will have only correct variables and no noise variables. Unlike the \(R^2\) statistic, the adjusted \(R^2\) statistic pays a price for the inclusion of unnecessary variables in the model.

Hastie在這裡用的符號 \(d\) 就是我們的 \(p\),\(\text{RSS}\) 就是我們的 \(\text{SSE}\)。

我的解釋是,如果加入更多的independent variables,則 \(p\) 會變大,\(\text{SSE}\) 會變小,這時有兩種情形:

  • 如果 \(\text{SSE}\) 只有變小一點點,那麼 \(p\) 的變化對 \(R_{\text{a}}^2\) 的影響比較大,就會讓 \(R_{\text{a}}^2\) 變小,就表示加入這些independent variables是不好的;
  • 如果 \(\text{SSE}\) 變小很多,那麼 \(\text{SSE}\) 的變化對 \(R_{\text{a}}^2\) 的影響比較大,就會讓 \(R_{\text{a}}^2\) 變大,就表示加入這些independent variables是好的。

(18.8) Spearman Rank-Correlation Coefficient

\[ r_s=1-\frac{6\sum_{i=1}^{n}d_i^2}{n(n^2-1)} \]

課本有誤,誤寫成 \(n^2+1\)。

Proof: See [Hogg, IMS, p.634, subsec. 10.8.2]. It gives another more instructive expression \[ r_S=\frac{\sum\left[R(X_i)-\frac{n+1}{2}\right]\left[R(Y_i)-\frac{n+1}{2}\right]}{n(n^2-1)/12} \] Note that \(\frac{n+1}{2}\) and \(\frac{n^2-1}{12}\) is the mean and variance of the discrete uniform distribution, respectively. Use \[ \sum R(X_i)^2=\sum R(Y_i)^2=\frac{1}{6}n(n+1)(2n+1) \] and \[ \sum R(X_i)=\sum R(Y_i)=\frac{n(n+1)}{2} \] to show that \[ 1-\frac{6\sum d_i^2}{n(n^2-1)} =1-\frac{6\sum [R(X_i)-R(Y_i)]^2}{n(n^2-1)} \] and \[ \frac{\sum\left[R(X_i)-\frac{n+1}{2}\right]\left[R(Y_i)-\frac{n+1}{2}\right]}{n(n^2-1)/12} \] both are equal to \[ \frac{12\sum R(X_i)R(Y_i)-3n(n+1)^2}{n(n^2-1)} \]

References

  • [Casella] Casella and Berger's Statistical Inference
  • [Hogg, PSI] Hogg and Tanis's Probability and Statistical Inference
  • [Hogg, IMS] Hogg, McKean and Craig's Introduction to Mathematical Statistics

No comments:

Post a Comment