信賴區間

信賴區間

信賴區間

  confidence intervals hypothesis tests
μ
σ known
¯x±zα/2σn
(8.1) proof
z=¯xμ0σ/n
(9.1)
μ
σ unknown
¯x±tα/2(n1)sn
(8.2) proof
t=¯xμ0s/n
(9.2)
μ1μ2
σ1,σ2 known
(¯x1¯x2)±zα/2σ21n1+σ22n2
(10.4) proof
z=(¯x1¯x2)D0σ21n1+σ22n2
(10.5)
μ1μ2
σ1=σ2 unknown
(¯x1¯x2)±tα/2(n+m2)(n11)s21+(n21)s22n1+n221n1+1n2
proof
μ1μ2
σ1,σ2 unknown
(¯x1¯x2)±tα/2(d.f.)s21n1+s22n2
(10.6) proof
d.f.=(s21n1+s22n2)21n11(s21n1)2+1n21(s22n2)2
(10.7)
t=(¯x1¯x2)D0s21n1+s22n2
(10.8)
d.f.=(s21n1+s22n2)21n11(s21n1)2+1n21(s22n2)2
(10.7)
p ¯p±zα/2¯p(1¯p)n
(8.6) proof
z=¯pp0p0(1p0)n
(9.4)
p1p2 (¯p1¯p2)±zα/2¯p1(1¯p1)n1+¯p2(1¯p2)n2
(10.13) proof
z=¯p1¯p2¯p(1¯p)(1n1+1n2)
(10.16)
σ2 [(n1)s2χ2α/2,(n1)s2χ21α/2]
(11.7) proof
χ2=(n1)s2σ20
(11.8)
σ21σ22 [1Fα/2(n1,m1)s21s22,Fα/2(m1,n1)s21s22]

Motivation

我們會先有一個母體,還有母體平均 μ,例如全台灣人的平均身高,但我們不可能真的去調查每個人的身高,有可能調查完最後一個人,第一個人就長高了,所以我們只能抽樣某些人,調查這些人的身高,得到樣本平均 ˉX,來推估母體平均。

既然是估計,難免會有誤差,但我們不能放任誤差任意大,我們得先設定一個我們可以接受的誤差範圍,也就是 |ˉXμ|error

既使限制了誤差的範圍,我們還是沒辦法保證誤差一定在這個範圍中,我們只能描述誤差在這個範圍的機率,並視需求調整這個機率,也就是 P(|ˉXμ|error)=1α

寫成 1α 是統計學家們約定的,稱為信心係數。

我們先假設 Xnormal(μ,σ2),所以 ˉXμσ/nnormal(0,1)。注意到 P(zα/2ˉXμσ/nzα/2)=zα/2zα/2the pdf of normal(0,1)=1α.

用圖形來看比較容易記。

Your browser does not support the HTML5 canvas tag.

所以我們把上面的式子做一點變化 P(|ˉXμ|error)=P(errorˉXμerror)=P(errorσ/nˉXμσ/nerrorσ/n)=P(zα/2ˉXμσ/nzα/2)=1α

能不能在probability function P 裡面任意將不等式變形這點還沒想清楚,但可以注意到不等式的等價變化 zα/2ˉXμσ/nzα/2zα/2μˉXσ/nzα/2zα/2σnμˉXzα/2σnˉXzα/2σnμˉX+zα/2σn

注意到 zα/2=errorσ/n,或是寫成 nerror=zα/2σ,所以

  • error 固定時,nzα/2 成正比。
  • n 固定時,errorzα/2 成正比。
  • zα/2 固定時,errorn 成反比。

常用的 1α 數值及其對應的 zα/2 如下 1α=0.90,zα/2=1.645;1α=0.95,zα/2=1.96;1α=0.99,zα/2=2.576.

直觀解釋是,我們抽100次的樣本,然後算100次的樣本平均,然後得到100個信賴區間,則這100個區間裡面,大概會有95個區間包含母體平均。

這裡摘錄書上的說明:For a particular sample, this interval either does or does not contain the mean μ. However, if many such intervals were calculated, about 90% of them should contain the mean μ.

Confidence Intervals for Means, Variance is known

  1. 我們假設 Xnormal(μ,σ2),所以 ˉXμσ/nnormal(0,1)
  2. P(zα/2ˉXμσ/nzα/2)=1α
    Your browser does not support the HTML5 canvas tag.
  3. zα/2ˉXμσ/nzα/2zα/2μˉXσ/nzα/2zα/2σnμˉXzα/2σnˉXzα/2σnμˉX+zα/2σn

Confidence Intervals for Means, Variance is unknown

  1. 因為 σ2 未知,所以我們用 S2 代替 σ2,於是 ˉXμS/n=ˉXμσ/nS/σ=ˉXμσ/n(n1)S2σ2n1Theorem 5.3.1, Definition 5.3.4t(n1)
  2. P(tα/2(n1)ˉXμS/ntα/2(n1))=1α
    Your browser does not support the HTML5 canvas tag.
  3. tα/2(n1)ˉXμS/ntα/2(n1)tα/2(n1)μˉXS/ntα/2(n1)tα/2(n1)SnμˉXtα/2(n1)SnˉXtα/2(n1)SnμˉX+tα/2(n1)Sn

Confidence Intervals for the Difference of Two Means, Variances are Known

  1. Xnormal(μX,σ2X),Ynormal(μY,σ2Y)Theorem 5.3.1ˉXnormal(μX,σ2Xn),ˉYnormal(μY,σ2Ym)Theorem 4.2.14, Theorem 2.3.4ˉXˉYnormal(μXμY,σ2Xn+σ2Ym)p.102, line -1(ˉXˉY)(μXμY)σ2Xn+σ2Ymnormal(0,1)
  2. P(zα/2(ˉXˉY)(μXμY)σ2Xn+σ2Ymzα/2)=1α
    Your browser does not support the HTML5 canvas tag.
  3. zα/2(ˉXˉY)(μXμY)σ2Xn+σ2Ymzα/2zα/2(μXμY)(ˉXˉY)σ2Xn+σ2Ymzα/2zα/2σ2Xn+σ2Ym(μXμY)(ˉXˉY)zα/2σ2Xn+σ2Ym(ˉXˉY)zα/2σ2Xn+σ2YmμXμY(ˉXˉY)+zα/2σ2Xn+σ2Ym

Confidence Intervals for the Difference of Two Means, Variances are Unknown and Equal

  1. Xnormal(μX,σ2X),Ynormal(μY,σ2Y)Theorem 5.3.1ˉXnormal(μX,σ2Xn),ˉYnormal(μY,σ2Ym)Theorem 4.2.14, Theorem 2.3.4ˉXˉYnormal(μXμY,σ2Xn+σ2Ym)p.102, line -1(ˉXˉY)(μXμY)σ2Xn+σ2Ymnormal(0,1)
    Furthermore, By Theorem 5.3.1(n1)S2Xσ2χ2n1,(m1)S2Yσ2χ2m1Lemma 5.3.2(n1)S2Xσ2+(m1)S2Yσ2χ2n+m2Definition 5.3.4(ˉXˉY)(μXμY)σ2Xn+σ2Ym(n1)S2Xσ2+(m1)S2Yσ2n+m2t(n+m2)σX=σY=σ(ˉXˉY)(μXμY)(n1)S2X+(m1)S2Yn+m21n+1mt(n+m2)
  2. P(tα/2(n+m2)(ˉXˉY)(μXμY)(n1)S2X+(m1)S2Yn+m21n+1mtα/2(n+m2))=1α
    Your browser does not support the HTML5 canvas tag.
  3. tα/2(n+m2)(ˉXˉY)(μXμY)(n1)S2X+(m1)S2Yn+m21n+1mtα/2(n+m2)tα/2(n+m2)(μXμY)(ˉXˉY)(n1)S2X+(m1)S2Yn+m21n+1mtα/2(n+m2)tα/2(n+m2)(n1)S2X+(m1)S2Yn+m21n+1m(μXμY)(ˉXˉY)tα/2(n+m2)(n1)S2X+(m1)S2Yn+m21n+1m(ˉXˉY)tα/2(n+m2)(n1)S2X+(m1)S2Yn+m21n+1mμXμY(ˉX+ˉY)+tα/2(n+m2)(n1)S2X+(m1)S2Yn+m21n+1m

Confidence Intervals for the Difference of Two Means, Variances are Unknown and Nonequal

證明略。

Confidence Intervals for Variances

  1. By Theorem 5.3.1 (n1)S2σ2χ2(n1)
  2. P(χ21α/2(n1)(n1)S2σ2χ2α/2(n1))=1α
    Your browser does not support the HTML5 canvas tag.
  3. χ21α/2(n1)(n1)S2σ2χ2α/2(n1)1χ2α/2(n1)σ2(n1)S21χ21α/2(n1)(n1)S2χ2α/2(n1)σ2(n1)S2χ21α/2(n1)

Confidence Intervals for the Quotient of Two Variances

  1. By Theorem 5.3.1(m1)S2Yσ2Yχ2m1,(n1)S2Xσ2Xχ2n1p.225, line 1S2Yσ2YS2Xσ2X=[(m1)S2Yσ2Y]/(m1)[(n1)S2Xσ2X]/(n1)F(m1,n1)
  2. P(F1α/2(m1,n1)S2Yσ2YS2Xσ2XFα/2(m1,n1))=1α
    Your browser does not support the HTML5 canvas tag.
  3. 大部分書籍中,F distribution的表格沒有 1α/2 的值,所以我們要將 F1α/2(m1,n1) 稍微變形一下。假設 WF(m1,n1),於是 P(WF1α/2(m1,n1))=1α/2P(1W1F1α/2(m1,n1))=1α/21P(1W1F1α/2(m1,n1))=α/2P(1W1F1α/2(m1,n1))=α/2Theorem 5.3.8, 1WF(n1,m1)1F1α/2(m1,n1)=Fα/2(n1,m1)F1α/2(m1,n1)=1Fα/2(n1,m1)
    所以原本的不等式可以改成 1Fα/2(n1,m1)S2Yσ2YS2Xσ2XFα/2(m1,n1)1Fα/2(n1,m1)S2XS2Yσ2Xσ2YFα/2(m1,n1)S2XS2Y

Confidence Intervals for Proportions

  1. Ybinomial(n,p)Y=ni=1Xi, where XiBernoulli(p)Central Limit TheoremYnpp(1p)n=ˉXpp(1p)nnormal(0,1)
  2. P(zα/2Ynpp(1p)nzα/2)=1α
    Your browser does not support the HTML5 canvas tag.
  3. zα/2Ynpp(1p)nzα/2zα/2pYnp(1p)nzα/2zα/2p(1p)npYnzα/2p(1p)nYnzα/2p(1p)npYn+zα/2p(1p)npYnYnzα/2Yn(1Yn)npYn+zα/2Yn(1Yn)n

Confidence Intervals for the Difference of Two Proportions

  1. Y1binomial(n1,p1),Y2binomial(n2,p2)Central Limit TheoremY1n1p1p1(1p1)n1normal(0,1),Y2n2p2p2(1p2)n2normal(0,1)Y1n1normal(p1,p1(1p1)n1),Y2n2normal(p2,p2(1p2)n2)Theorem 4.2.14, Theorem 2.3.4Y1n1Y2n2normal(p1p2,p1(1p1)n1+p2(1p2)n2)p.102, line -1(Y1n1Y2n2)(p1p2)p1(1p1)n1+p2(1p2)n2normal(0,1)
  2. P(zα/2(Y1n1Y2n2)(p1p2)p1(1p1)n1+p2(1p2)n2zα/2)=1α
    Your browser does not support the HTML5 canvas tag.
  3. zα/2(Y1n1Y2n2)(p1p2)p1(1p1)n1+p2(1p2)n2zα/2zα/2(p1p2)(Y1n1Y2n2)p1(1p1)n1+p2(1p2)n2zα/2zα/2p1(1p1)n1+p2(1p2)n2(p1p2)(Y1n1Y2n2)zα/2p1(1p1)n1+p2(1p2)n2(Y1n1Y2n2)zα/2p1(1p1)n1+p2(1p2)n2p1p2(Y1n1Y2n2)+zα/2p1(1p1)n1+p2(1p2)n2

No comments:

Post a Comment