Stirling's Formula
筆者在另一篇證明用常態分佈近似二項分佈的文章中,用到了這個Stirling's Formula,這裡證明一下。主要內容來自於page 552, section 11, chapter 11 in Boas's Mathematical Methods in The Physical Sciences 3rd edition. 黑色字體是課文,藍色字體是我的補充說明。
\[n!\sim n^{n}e^{-n}\sqrt{2\pi n}\tag{11.1}\]
Proof:
Start with \[p!=\int_0^{\infty}x^{p} e^{-x}dx=\int_0^{\infty}e^{(p\ln{x})-x}dx.\tag{11.2}\]
Remark: I show that \(p!=\int_0^{\infty}x^{p} e^{-x}dx\) by integral by parts.\(x^p\) | \(e^{-x}\) | |
\\(+\) | ||
\(px^{p-1}\) | \(-e^{-x}\) | |
\\(-\) | ||
\(p(p-1)x^{p-2}\) | \(e^{-x}\) | |
\\(+\) | ||
\(p(p-1)(p-2)x^{p-3}\) | \(-e^{-x}\) | |
\\(-\) | ||
\(\vdots\) | \(\vdots\) | \(\vdots\) |
\(p(p-1)(p-2)\cdots 2 x\) | \(\pm e^{-x}\) | |
\\(\pm\) | ||
\(p!\) | \(\pm e^{-x}\) | |
\\(\pm\) | ||
\(0\) | ---\(\int \pm\) | \(\pm e^{-x}\) |
Substitute a new variable \(y\) such that \[x=p+y\sqrt{p}.\]
Then \[dx=\sqrt{p}dy\]
\[x=0 \text{ corresponds to }y=-\sqrt{p},\]
and (11.2) becomes \[p!=\int_{-\sqrt{p}}^{\infty}e^{p\ln{(p+y\sqrt{p})}-p-y\sqrt{p}}\sqrt{p}dy.\tag{11.3}\]
For large \(p\), the logarithm can be expanded in the following power series: \[\ln{(p+y\sqrt{p})}=\ln{p}+\ln{\left(1+\frac{y}{\sqrt{p}}\right)}=\ln{p}+\frac{y}{\sqrt{p}}-\frac{y^2}{2p}+\cdots.\tag{11.4}\]
since \(\frac{1}{1-x}=1+x+x^2+\cdots\) and \(\ln{(1-x)}=-x-\frac{x^2}{2}-\frac{x^3}{3}-\cdots \) by integrating both sides and \(\ln{(1+x)}=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots\).
I don't know why we can omit the later terms in the following deduction.
Substituting (11.4) into (11.3), we get \[ \begin{array}{rcl} p! &\sim& \int_{-\sqrt{p}}^{\infty} e^{(p\ln{p})+y\sqrt{p}-(y^2/2)-p-y\sqrt{p}}\sqrt{p}dy\\ &\stackrel{\text{cancel out }y\sqrt{p}}{=}& e^{(p\ln{p})-p}\sqrt{p}\int_{-\sqrt{p}}^{\infty}e^{-y^2/2}dy \\ &=& p^p e^{-p}\sqrt{p}\left[\int_{-\infty}^{\infty}e^{-y^2/2}dy-\int_{-\infty}^{-\sqrt{p}}e^{-y^2/2}dy\right]. \end{array} \]
The first integral is easily shown to be \(\sqrt{2\pi}\) (Problem 9.4). The second integral tends to zero as \(p\to \infty\), and we have \[p!\sim p^{p} e^{-p} \sqrt{2\pi p}\]
which is (11.1).
No comments:
Post a Comment