De Moivre-Laplace Theorem
Normal Approximation to the Binomial Distribution. 用常態分佈近似二項分佈。
主要內容來自於page 762 and page 765, problem 8, section 8, chapter 15 in Boas's Mathematical Methods in The Physical Sciences 3rd edition. 黑色字體是課文,藍色字體是我的補充說明。
如果可以用中央極限定理(Central Limit Theore)就簡單多了。
Y∼binomial(n,p)⇒Y=∑ni=1Xi, where Xi∼Bernoulli(p)Central Limit Theorem⇒ˉX−p√p(1−p)n∼normal(0,1)⇒nˉX−np√np(1−p)∼normal(0,1)⇒Y=nˉX∼normal(np,np(1−p))
Normal Approximation to the Binomial Distribution As an example of approximating another distribution by a normal distribution, let's consider the binomial distribution (7.3). For large n and large np, we can use Stirling's formula (Chapter 11, Section 11) to approximate the factorials in C(n,x) in (7.3) and make other approximations to find f(x)=C(n,x)pxqn−x∼1√2πnpqe−(x−np)2/(2npq).
Carry through the following details of a derivation of (8.3). Start with (7.3); we want an approximation to (7.3) for large n. First approximate the factorials in C(n,x) by Stirling's formula (Chapter 11, Section 11) and simplify to get f(x)∼(npx)x(nqn−x)n−x√n2πx(n−x).
C(n,x)pxqn−x=n!(n−x)!x!pxqn−xStirling's formula∼nne−n√2πn(n−x)n−xe−(n−x)√2π(n−x) xxe−x√2πxpxq(n−x)cancel out e,√2π=nn√n(n−x)n−x√n−x xx√2πxpxq(n−x)=√n2πx(n−x)nn(n−x)n−xxxpxqn−xnn=nn−x⋅nx=√n2πx(n−x)nn−x⋅nx(n−x)n−xxxpxqn−x=√n2πx(n−x)(npx)x(nqn−x)n−x
Show that if δ=x−np, then x=np+δ and n−x=nq−δ. (p+q=1.) Make these substitutions for x and n−x in the approximate f(x). To evaluate the first two factors in f(x) (ignore the square root for now): Take the logarithm of the first two factors; show that lnnpx=−ln(1+δnp)
Recall that 11−x=1+x+x2+⋯ and ln(1−x)=−x−x22−x33−⋯ by integrating both sides and ln(1+x)=x−x22+x33−⋯.
(npx)x(nqn−x)n−x=exp{ln[(npx)x(nqn−x)n−x]}=exp{−xln(xnp)−(n−x)ln(n−xnq)}substitutions=exp{−xln(np+δnp)−(n−x)ln(nq−δnq)}=exp{−xln(1+δnp)−(n−x)ln(1−δnq)}∼exp{−x(δnp−δ22n2p2+δ33n3p3+⋯)−(n−x)(−δnq−δ22n2q2−δ33n3q3−⋯)}substitutions=exp{(−np−δ)(δnp−δ22n2p2+δ33n3p3+⋯)−(nq−δ)(−δnq−δ22n2q2−δ33n3q3−⋯)}=exp{−δ−δ2np+δ22np_+δ32n2p2+⋯+δ−δ2nq+δ22nq_−δ32n2q2+⋯}cancel out δ, combine δ2np and δ2nq=exp{−δ22np−δ22nq+⋯}=exp{−δ22npq(p+q+⋯)}=exp{−δ22npq(1+powers of δn)}
Hence (npx)x(nqn−x)n−x∼e−δ2/(2npq)
No comments:
Post a Comment