Processing math: 100%

Normal Approximation to the Binomial Distribution

Normal Approximation to the Binomial Distribution

De Moivre-Laplace Theorem

Normal Approximation to the Binomial Distribution. 用常態分佈近似二項分佈。

主要內容來自於page 762 and page 765, problem 8, section 8, chapter 15 in Boas's Mathematical Methods in The Physical Sciences 3rd edition. 黑色字體是課文,藍色字體是我的補充說明。

如果可以用中央極限定理(Central Limit Theore)就簡單多了。 Ybinomial(n,p)Y=ni=1Xi, where XiBernoulli(p)Central Limit TheoremˉXpp(1p)nnormal(0,1)nˉXnpnp(1p)normal(0,1)Y=nˉXnormal(np,np(1p))

但我們在這裡是不用中央極限定理的證明。

Normal Approximation to the Binomial Distribution As an example of approximating another distribution by a normal distribution, let's consider the binomial distribution (7.3). For large n and large np, we can use Stirling's formula (Chapter 11, Section 11) to approximate the factorials in C(n,x) in (7.3) and make other approximations to find f(x)=C(n,x)pxqnx12πnpqe(xnp)2/(2npq).

Carry through the following details of a derivation of (8.3). Start with (7.3); we want an approximation to (7.3) for large n. First approximate the factorials in C(n,x) by Stirling's formula (Chapter 11, Section 11) and simplify to get f(x)(npx)x(nqnx)nxn2πx(nx).

C(n,x)pxqnx=n!(nx)!x!pxqnxStirling's formulannen2πn(nx)nxe(nx)2π(nx) xxex2πxpxq(nx)cancel out e,2π=nnn(nx)nxnx xx2πxpxq(nx)=n2πx(nx)nn(nx)nxxxpxqnxnn=nnxnx=n2πx(nx)nnxnx(nx)nxxxpxqnx=n2πx(nx)(npx)x(nqnx)nx

Show that if δ=xnp, then x=np+δ and nx=nqδ. (p+q=1.) Make these substitutions for x and nx in the approximate f(x). To evaluate the first two factors in f(x) (ignore the square root for now): Take the logarithm of the first two factors; show that lnnpx=ln(1+δnp)

and a similar formula for ln[nq/(nx)]; expand the logarithms in a series of powers of δ/(np), collect terms and simplify to get ln(npx)x(nqnx)nxδ22npq(1+power of δn)

Recall that 11x=1+x+x2+ and ln(1x)=xx22x33 by integrating both sides and ln(1+x)=xx22+x33. (npx)x(nqnx)nx=exp{ln[(npx)x(nqnx)nx]}=exp{xln(xnp)(nx)ln(nxnq)}substitutions=exp{xln(np+δnp)(nx)ln(nqδnq)}=exp{xln(1+δnp)(nx)ln(1δnq)}exp{x(δnpδ22n2p2+δ33n3p3+)(nx)(δnqδ22n2q2δ33n3q3)}substitutions=exp{(npδ)(δnpδ22n2p2+δ33n3p3+)(nqδ)(δnqδ22n2q2δ33n3q3)}=exp{δδ2np+δ22np_+δ32n2p2++δδ2nq+δ22nq_δ32n2q2+}cancel out δ, combine δ2np and δ2nq=exp{δ22npδ22nq+}=exp{δ22npq(p+q+)}=exp{δ22npq(1+powers of δn)}

Hence (npx)x(nqnx)nxeδ2/(2npq)

for large n. [We really want δ/n small, that is, x near enough to its average value np so that δ/n=(xnp)/n is small. This means that our approximation is valid for the central part of the graph (see Figures 7.1 to 7.3) around x=np where f(x) is large. Since f(x) is negligibly small anyway for x far from np, we ignore the fact that our approximation may not be good there. For more detail on this point, see Feller, p. 192]. Returning to the square root factor in f(x), approximate x by np and nx by nq (assuming δnp or nq) and obtain (8.3).

No comments:

Post a Comment